Section: Receiving Tubes

from JETEC release #1626, April 9, 1956

# RELIABLE MINIATURE DUAL CONTROL PENTODE



#### CHART 1. DESIGN CENTER MAXIMUM RATINGS\*

| Heater Voltage (ac or dc)**                         | 6.3 volts  |
|-----------------------------------------------------|------------|
| Plate Voltage                                       | 180 volts  |
| Grid #2 Voltage                                     | 140 volts  |
| Grid #3 Voltage                                     | 30 volts   |
| Plate Dissipation                                   | 2.0 watts  |
| Grid #2 Dissipation                                 | 0.75 watt  |
| Cathode Current                                     | 18 mA      |
| Heater-Cathode Voltage                              | 300 volts  |
| Cathode Warm-up Time                                | 25 seconds |
| Bulb Temperature (at hottest point on bulb surface) | 160°C      |

To obtain greatest life expectancy from tube, avoid designs where the tube is subject to all maximum ratings simultaneously. See application notes,

#### CHART 2.

## PHYSICAL CHARACTERISTICS

| BaseMiniature bu    | tton 9-pin |
|---------------------|------------|
| Bulb                | T-61/2     |
| Max, overall length | 2¾16 in.   |
| Max. seated height  | 115⁄16 in. |
| Max. diameter       | %/s in.    |
| Mounting position   | Any        |
| Max. bulb temp      | 160°C      |

# DESCRIPTION

This miniature nine-pin dual control sharp cut-off, R.F. pentode is one of the Bendix Red Bank line of reliable vacuum tubes specifically designed for aircraft and industrial applications where freedom from early failure, long average service life and uniform operating characteristics are extremely important. It is intended to replace the 6AS6 in applications where reliability is the primary consideration. Each tube is given a 45-hour run-in under various overload, vibration and shock conditions likely to be encountered in service. This run-in serves to reduce early failures by eliminating tubes with any minor defects that might lead to failure under actual operating conditions.

The use of a coil type heater inside an extruded alumina insulator gives a long life heater structure which stands up well under high heater to cathode voltage. The mount structure is so designed that the tube is capable of withstanding severe shock and vibration.

The control grid (Grid #1) and the suppressor grid (Grid #3) may be used as independent control electrodes for such circuits as mixers, gated amplifiers, delay circuits and gain controlled amplifiers.

## CHART 3. AVERAGE ELECTRICAL CHARACTERISTICS

| Heater Current, If                            | 0.25        | 0.25 amp       |  |
|-----------------------------------------------|-------------|----------------|--|
| Plate Voltage, Eb                             | 120         | 120 volts      |  |
| Grid #2 Voltage, Ec2                          | 120         | 120 volts      |  |
| Grid #1 Voltage, Ec1                          | _2          | —2 volts       |  |
| Grid #3 Voltage, Ec3                          | —3          | 0 volts        |  |
| Plate Current, 1b                             | 4.2         | 3.5 mA         |  |
| Grid #2 Current, 1c2                          | 5.1         | 3,3 mA         |  |
| Mutual conductance, Grid #1—plate             | 2100        | 3250 μmhos     |  |
| Mutual conductance, Grid #3—plate             | 710         | 450 μmhos      |  |
| Grid #1 Voltage for 1b = 10 $\mu$ A (a        | approx.) —  | 7 volts        |  |
| Grid #3 Voltage for 1b $\simeq$ 10 $\mu$ A (c | pprox.) —15 | 0 volts        |  |
| Direct Inter-electrode Capacitances           | (no shield) | (with shield)  |  |
| Grid #1 to plate                              | 0.04 max.   | 0.035 max. μμf |  |
| Input                                         | 4.4         | 4.5 max. μμf   |  |
| Output                                        | 3.7         | 3.3 µµf        |  |
| Grid #1 to Grid #3                            | 0.16 max.   | 1.6 μμf        |  |
| Grid #3 to all other electrodes               | 3.5         | 3,6 µµf        |  |
|                                               |             |                |  |

RED BANK DIVISION BENDIX AVIATION CORPORATION EATONTOWN, NEW JERSEY



<sup>\*\*</sup> Voltage should not fluctuate more than  $\pm 5\%$ .

# **ELECTRICAL CHARACTERISTICS AND TEST DATA**

#### CHART 4. TEST CONDITIONS AND CHARACTERISTICS LIMITS

All Tubes are Stabilized for 45 Hours Under Tost Conditions and

2 G Vibration of 30 Cps. Prior to 100% Testing

| DESIGN TESTS   Insulation of Electrodes   Eg1-all = −100 Vdc   R   100   −                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |               | ı                                             |          | П                                                |                |        | . T         |      |             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------|-----------------------------------------------|----------|--------------------------------------------------|----------------|--------|-------------|------|-------------|
| Reater Current   11   235   250   265   mA     Heater Current   11   235   250   265   mA     Heater Cothode Leakage   1hk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHADAC                  | TE015116      |                                               | CAMBUL   | 1                                                | .              |        | - 1         | MAY  | IINITS      |
| Reater Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |               | <b>─</b>                                      | 71111000 | 1                                                | •              | (21112 | <del></del> |      |             |
| Heater-Cothode Leakage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |               | <del> </del>                                  | н        | 221                                              | _              | 250    | -+          | 265  |             |
| Single Current   Single Single Current   Single Current   Single Current   Single Single Current   Single Current   Single Current   Single Current   Single Single Current   Single Current |                         |               |                                               |          | 13.                                              | <u>'</u>       |        | +           |      | -           |
| Plate Current   1b   2.5   5.5   9.0   mAdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | ja            |                                               |          | <del>                                     </del> | ·              |        |             |      |             |
| Screen Grid Current   Ic2   I.0   2.5   6.0   mAdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |               |                                               |          |                                                  |                |        | _           |      | <del></del> |
| Transcanductance (1) g1-p   Sm   2250   3250   4500   μmhos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |               | _                                             |          | -11                                              |                |        |             |      | mAdc        |
| Short and Continuity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |               |                                               | lc2      | 1.0                                              | )              | 2.5    |             | 6.0  | mådc        |
| DESIGN TESTS   Insulation of Electrodes   Eg1-all = -100 Vdc   R   100   -   -   meg   meg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Transconductance (1) g  | 1-p           |                                               | Sm       | 225                                              | 0              | 3250   |             | 4500 | μπλο        |
| Insulation of Electrodes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Short and Continuity    |               |                                               |          |                                                  |                |        |             |      |             |
| Eg]-all = -100 Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DESIGN                  | TESTS         |                                               |          |                                                  |                |        |             |      |             |
| Ep-all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Insulation of Electrode | ts.           |                                               |          |                                                  | <u> </u> _     |        | _           |      |             |
| Ep-all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Eg1-all = -100 Y        | dc            | 11                                            | R        | 100                                              | )              | _      |             |      | meg         |
| Ec1 = 8 Vdc   Ec3 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ep-all = -300  Vd       | t             |                                               | R        | 100                                              | )              |        |             | _    | meg         |
| Ect   = -6 Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cut Off Plate Current   |               |                                               |          |                                                  |                |        |             |      |             |
| Cut Off Plate Current   Ec1 = -3 Vdc   Ec3 = -10 Vdc   Ib   5   -   200   μAdc   μΑdc   μμε   μΕc1   μαε   μαε  |                         |               | li li                                         | Ιb       | -                                                |                | _      |             | 200  | μAdc        |
| Ect   = -3 Vdc   Ec3 = -10 Vdc   1b   5   -   200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ecl = -6 Vdc Ec         | 3 = 0         |                                               | lb.      | 5                                                | L              |        |             |      | μAdc        |
| Ec1 = -3 Vdc Ec3 = -6 Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |               |                                               |          | 1                                                |                |        | - 1         |      | 1           |
| Transconductance   2  gl-p   Ec = 5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |               |                                               |          | -                                                |                | _      | ĺ           | 200  | μAdc        |
| Transconductance   3  93-p   Ec3 = -3   Sm   400   710   1300   μmhos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |               |                                               |          | 5                                                | _              |        |             |      | μAdc        |
| Transconductance [4] g1-p Ec3 = -5   Sm   S00   1150   1700   μmhos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Transconductance (2) g  | 1-p  Ec = 5.7 | <u>'                                     </u> | ΔSm      | Ш –                                              |                |        |             | 15   | %           |
| RF Noise Ecal == 15 mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Transconductance (3) g  | 3-p Ec3 = -   | -3                                            | Sm       | 400                                              |                | 710    |             | 1300 | μmho        |
| Noise and Microphonics  Ebb = Ecc2 = 250 Vdc  Ect = 0 RK = 1000 ohm  Rg2 = 0.5 Meg. Rp = 0.1 Meg.  (g2 = 2 μt RK = 1000 μt  Ecut = 200 mVac  Capacitance (with shield)  (g1-p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Transconductance (4) g  | 1-p Ec3 == -  | -5                                            | Şm       | 500                                              | )              | 1150   |             | 1700 | μmho        |
| Ebb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RF Noise Ecal == 15 m   | ηΥ            |                                               |          | 1 -                                              |                |        |             | 3    | mW          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Noise and Microphonic   | s             |                                               |          | 1                                                |                | •      |             |      |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ebb = Ecc2 == 250       | ) Vdc         |                                               |          |                                                  |                |        |             |      |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |               |                                               |          |                                                  |                |        | - [         |      |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |               |                                               |          | 1                                                |                |        |             |      |             |
| Capucitance (with shield)         (g1-p Gin 4.0 4.5 5.0 μμι 6.0 μμι 6                             |                         | ≖ 1000 μf     |                                               |          | lf .                                             |                |        |             |      | 1           |
| Cg1-p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |               | <del> </del>                                  |          | <del>  -</del>                                   |                |        | _           | 200  | m∀ac        |
| Cin   4.0   4.5   5.0   μμ1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Capacitance (with shie  | id)           | []                                            |          |                                                  |                |        |             |      |             |
| Cout   2.9   3.3   3.7   μμτ   (glg3     -   0.16   μμτ   μμτ   (gg-3-alf   3.2   3.6   4.0   μτ   (gg-3-alf   3.   |                         |               |                                               |          | -                                                |                | _      |             |      |             |
| Cg1g3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |               |                                               |          |                                                  |                |        | 1           |      |             |
| ELECTRODE:         Ef         Eb         Ec1         Ec2         Ec3         Ehk           TEST CONDITIONS:         6.3         120         -2         120         0 $\pm$ 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |               | l                                             |          | 2.7                                              | 1              | 3.3    | İ           |      |             |
| ELECTRODE:         Ef         Eb         Eci         Ec2         Ec3         Ehk           TEST (ONDITIONS:         6.3         120         -2         120         0         ± 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |               |                                               |          | 3.2                                              |                | 3.6    |             |      |             |
| TEST CONDITIONS: 6.3 120 $-2$ 120 0 $\pm 250$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ELECTRODE:              | Ef            |                                               | Ť        | <u> </u>                                         | <del>, '</del> |        |             |      | _           |
| 120 0 = 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TEST CONDITIONS:        | 6.3           |                                               |          |                                                  |                | -      |             |      |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *                       |               |                                               | - 1      | _                                                |                |        |             | u    |             |

## CHART 5. ADDITIONAL TESTS

In addition to the production and design lests shown in Chart 3 other tests are performed on a sampling basis to assure a high outgoing quality level. See below.

| TEST                        | CONDITIONS                                                     | DURATION               |  |  |
|-----------------------------|----------------------------------------------------------------|------------------------|--|--|
| Heater Cycling<br>Life Test | On 2½ Min.<br>Off 2½ Min.<br>Ef = 7.5 Ehk = 250                | 3,000 On-Off<br>Cycles |  |  |
| Life Test                   | Under "Test<br>Conditions"                                     | 1,000 Hours            |  |  |
| Life "Expectancy" Test      | Under ''Test<br>Conditions''                                   | 5,000 Hours            |  |  |
| High Level<br>Fatigue Test  | SOG—Shack<br>Excitation<br>18 Cycles/Sec.                      | 100 Hours              |  |  |
| Shock                       | 500 G                                                          | 20 Impacts             |  |  |
| Altitude Test               | 80,000 Feet                                                    | 5 Minutes              |  |  |
| Glass Strain Test           | Boiling Water<br>10 Ice Water                                  | 15 Seconds in<br>Each  |  |  |
| Mount Inspection            | 100% Test—Microscopic Inspection of 30 Possible Trouble Points |                        |  |  |







Bendix Red Bank Type TE-11





Special attention should be given to the temperatures at which the tubes are to be operated. Reliability will be seriously impaired if maximum bulb temperature is exceeded. The life expectancy will be reduced if conditions other than those specified for life test are imposed on the tube and will be reduced appreciably if absolute maximum ratings are exceeded. Both reliability and performance will be jeopardized if filament voltage ratings are exceeded. Life and reliability of performance are directly related to the degree that regulation of the heater voltage is maintained at its center rated value.

The bulb temperature should never exceed the maximum rated value at the hottest point and cooling should be employed if necessitated by the additive effects of operation at higher altitudes and high dissipation simultaneously or by other sources of heat in the equipment. Each proposed application should be life tested under maximum environmental conditions in order to check that the design gives the desired reliability.

Chart 11 is presented to emphasize the dangers of operating simultaneously at or near all maxima. In general, the effect on life of operation at increased ratings is additive and cumulative. Interpolation within this chart will give the designer a general idea of the life expec-



tancy and reliability of his application. Each proposed application should be life tested under maximum environmental conditions in order to check that the design gives the desired reliability. When conservatively used this tube has a life expectancy of 10,000 hours.

CHART 11. EFFECT ON LIFE OF INCREASED RATINGS

| See Also<br>Application Hotes | OPERATING CONDITIONS |            |             |  |  |  |
|-------------------------------|----------------------|------------|-------------|--|--|--|
| RATING OR<br>CHARACTERISTIC   | CONSERVATIVE         | TYPICAL    | MAXIMUM     |  |  |  |
| Heater Voltage                | 6.3 V ± 2%           | 6.3 V ± 5% | 6.3 V ± 10% |  |  |  |
| Plate Voltage                 | 120 Vdc              | 150 Vdc    | 180 Vdc     |  |  |  |
| Screen Voltage                | 100 Vdc              | 120 Vdc    | 140 Vdc     |  |  |  |
| Plate Current (Av.)           | 2,5 mA               | 5.5 mA     | 9 m A       |  |  |  |
| Screen Current (Av.)          | 1.0 mA               | 3.5 mA     | 6 mA        |  |  |  |
| Cathode Current (Penk)        | 8 mA                 | 10 mA      | 18 mA       |  |  |  |
| H-K Valtage                   | 200 V                | 250 V      | 300 Y       |  |  |  |
| Bulb Temperature              | 100°C                | 120°C      | 160°C       |  |  |  |
| Altitude                      | 0-20,000 ft          | 60,000 f1  | 80,000 ft   |  |  |  |
| Vibration                     | 1 6                  | 2.5 G      | 5 G         |  |  |  |
| LIFE EXPECTANCY               | MUMIXAM              | нын        | MEDIUM      |  |  |  |



Bendix Red Bank Type TE-11



STRUCTURAL FEATURES OF 6486 PROVIDE HIGH RELIABILITY AND LONG LIFE.

RED BANK DIVISION BENDIX AVIATION CORPORATION EATONTOWN, NEW JERSEY

